

Consortium for Energy Sustainability and Advancement Management

Melanie Kenderdine November 8, 2024 Socorro, New Mexico

NASA Satellite Photos, Elephant Butte Reservoir, New Mexico, My Home State

1994

2013

NASA Satellite Photos, Elephant Butte Reservoir, New Mexico, My Home State

On the ground at Elephant Butte, 2019

Net Zero Target Coverage, June 2023

Net Zero Target Setting

Comparing net zero target numbers over 2.5 years

https://zerotracker.net/analysis/net-zero-stocktake-2022

Net Zero Target Coverage, June 2023

New Mexico Energy Rankings/Generation Sources

The Challenges of **Integrating Intermittent Renewables**

Over the course of a year large-scale dependence on both wind and solar will result in significant periods requiring very large-scale back-up options

Hourly trends in solar and wind capacity factors in CA for 2017 aligned to normalized variation in hourly load relative to peak daily load

Source: CAISO data, EFI analysis

Source: EIA, 2020

The Challenges of Integrating Intermittent Renewables

Large-scale battery storage additions by region (2010-2022)

Annual additions of energy capacity megawatt hours

Average Lifecycle Water Consumption by Generation Type/Use, North America

https://www2.deloitte.com/us/en/insights/industry/power-and-utilities/renewable-energy-water-intensity-to-achieve-net-zero.html

Average Lifecycle Water Consumption by Generation Type/Use, North America

Coal with CCS

https://www2.deloitte.com/us/en/insights/industry/power-and-utilities/renewable-energy-water-intensity-to-achieve-net-zero.html

Forecast US Data Center Power Consumption, 2023-2030

е

https://www.novpigeeks.com/business/st-telemedia-data-center-philippines/

https://www.mckinsey.com/industries/private-capital/our-insights/how-data-centers-and-the-energy-sector-can-sate-ais-hunger-for-power

Two Way Electricity Flows and Grid Security

"...emerging advancements in ... smart grid technologies, cloud computing services, gridcyber vulnerability & assessments, and distributed energy resources represent significant cybersecurity threats to the continuity of delivered power. " (Sandia National Laboratory)

Two Way Electricity Flows and Grid Security

"...emerging advancements in ... smart grid technologies, cloud computing services, gridcyber vulnerability & assessments, and distributed energy resources represent significant cybersecurity threats to the continuity of delivered power. " (Sandia National Laboratory)

Connected West Reference Case, Generation Additions, Transmission Lines in 2045

ENERGY

Generator Additions by Technology

Sum of Selected Fields

WECC Transmission Lines

Connected West Reference Case, Generation Additions, Transmission Lines in 2045

Generator Additions by Technology

Sum of Selected Fields

WECC Transmission Lines

230-300 kV 345 kV 500 kV DC Line

STRATEGIES

Permitting Times: Issue for Both Clean and Conventional Energy

Permitting Times: Issue for Both Clean and Conventional Energy

Time from notice to decision (years)

https://www.brookings.edu/research/h ow-to-reform-federal-permitting-toaccelerate-clean-energy-infrastructurea-nonpartisan-way-forward/

https://www.brookings.edu/researc h/how-does-permitting-for-cleanenergy-infrastructure-work/ 19

Reference Frame: High Voltage Transmission Line Materials Needed by 2030

EIA: In 2016, there were 160,000 miles of high voltage transmissions lines

Princeton NZA (E+RE pathway with base land availability): The US will need a 75% increase in transmission capacity by 2030 to meet net zero targets

Assume 60% of that capacity is achieved by adding new miles (the other 40% is met with technology improvements) At 5 towers/mile, we will <u>need 360,000</u> transmission towers by <u>2030</u>

PRESAKOTA

EL LE Brownight

60% of 96,000 translates to 72,000 miles of new high voltage transmission lines

There are between 5 and 5.6 towers per mile on a high voltage transmission line (credible numbers range from 5 to 5.6)

Transmission towers are made of steel, aluminum and copper, among other materials. So are transmission lines. So are wind turbines. So are cell towers. So are EVs. So are EV charging stations

VV

https://www.eia.gov/todayinenergy/detail.php?id=27152

US Industrial Uses of Energy

Energy Consumption by Energy Source Shares and Industry, % (EIA AEO2020 Reference Case)

Key Technology Needs Both Heat and Oil

Wind turbine blades are manufactured using a composite mix of glass, carbon fiber, and plastic. It's a unique material that gives the blades the strength and durability to do its job.

The first step in the plastic manufacturing process is the extraction of raw materials...plastic is made from synthetic or semi-synthetic materials, all of which are derived from fossil fuels. The most common ones include natural gas, crude oil, and coal. These fossil fuels are extracted from the ground and then refined to create hydrocarbon-based feedstocks used to make plastic.

Natural Gas and Electricity Prices, Select OECD countries, 2021 (MWhr*)

е

natural gas price for industry (MWh) electricity price for industry (MWh)

CCS Projects 2022, Operational, Under Construction, Advanced/Early Development

CCS Projects 2022, Operational, Under Construction, Advanced/Early Development

Advanced Development by <u>Type/#</u>

Ethanol production 32 Natural gas processing Hydrogen production **Fertilizer production Power generation** 12 Bioenergy **Chemical production** Refining Various 12 **Direct air capture** Waste incineration

Source: Global CCS Institute, GLOBAL STATUS OF CCS TARGETING CLIMATE CHANGE, 2019 Source: Global CCS Institute, GLOBAL STATUS OF CCS, 2022

Operating by Type/#

Gas processing	13
Fertilizer production	4
Ethanol production	4
Hydrogen production	2
Power generation	1
Methanol production	1
Iron/steel production	1
Refining	1
Chemical production	1
Direct air capture	1
Syngas	1

New

Zealand

26

+670% in three years

NM Tech will initially focus on tasks 1,2,3,4,8 and \$976,46 4 has been approved to support the initial tranche of work.

- 2. Class VI Rule Development (6 MOS)
- 3. Stakeholder Education and Engagement (9 MOS)
- 4. Continued Proposed Rule Development based on Feedback from Task 3 (9 MOS)
- 5. EPA Preapplication Review Package (9 Mos)
- 6. Undertake State Level Class VI Rulemaking (12 MOS)
- 7. Formal Class VI Application for Submittal (9 MOS)

- 8. Identify Potential State-Level Legislative Changes Necessary to Support a Successful Class VI Program (6 моs)
- 9. General Legal Support (18 MOS)

According to Mike Hightower with the New Mexico Produced Water Research Consortium at NMSU --

- NM is estimated to generate of 4 million barrels of produced water per day. Much of this is disposed of through deep well injections
- Up to 150,000 acre feet of produced water is available on an annual basis (3X the water used by ABQ)
- Treatment and reuse is an avoided cost for oil and gas companies. This could lower costs to consumers
- NM also has two billion acre feet of brackish water that could utilized for green hydrogen production

According to a Dec. 2023 press release announcing Governor Lujan Grisham's strategic water supply initiative, "Diverting just 3% of the produced water disposed of in injection wells to make hydrogen could result in enough energy to fully power over 2 million homes annually."

https://nmbizcoalition.org/nm-oil-and-gas-producers-making-progress-on-produced-water/ https://nmpwrc.nmsu.edu/_assets/public_information/Water-Needs-for-Hydrogen-Development.pdf

NM Metals, Minerals on Which the US is 75-100% Import Dependent, Country Suppliers of US Market/% Total Imports from Country

	Found and/or Produced in NM			
	Mineral	<u>% Import Dependent</u>	<u>% Suppliers</u>	<u>Key Uses</u>
	Antimony	81	63% China	Ceramics, glass
Shiprock Aztec Durce Tierra Amarilla Raton	Arsenio	100	58% China	Lumber preservatives
Farmington (285) Tags (64) Clayton	Bismuth	94	69% China	Medical, atomic research
Sanostee Covote	Gallium	100	55% China	LEDs
666 Santa Clara Mora	Graphite	100	9% India	
Crownpoint Santa Fe			33% China	Batteries, fuel cells
Gallup Grante Grante Logan			23% Mexico	
			7% Canada	
Albuquerque 84 Bard	Indium	100	34% China	Electrical components
40 UNITE Sta Rosa			22% Canada	
Estantian All are on the Clovis			15% S. Korea	
All are on the	Manganese	100	69% Gabon	Steel production
50 2022 USGS	Niobium	100	22% Canada	Steel alloys
Reserve N E W Critical List	Rare earths	100	80% China	Metallurgy, glass, wind turbines
Gila National Truth Or 54 Roswell (380)	U	100	China, Japan	Aluminum, fuel cells
Forest			Europe (% NA)	electronics
Silver City	Tellurium	95	57% Canada	Solar cells, cooling
	Titanium	75	39% South Africa	Steel alloys
Lordsburg Deming Las Cruces Carlsbad			20% Australia	
Jai			11% Canada	
	Vanadium	95	37% South Africa	Steel 👘
			14% Russia	
<u></u>			11% China	
	Zinc	83	64% Canada	Metal galvanizing
			14% Mexico	

Demand for Electrification/Transportation = \$10,000 per ton Copper

Green electrification related copper demand by region

Copper Content by Vehicle Type

140 M EVs by 2030 in IEA's SDS X 183 lbs. of copper/EV = 11.6 million Mt of copper for EVs

<u>Global production, 2020</u>: approx. 20 million Mt

<u>US uses (%)</u>: building construction, 43%; electrical and electronic products, 21%; transportation equipment, 19%; consumer and general products, 10%; and industrial machinery and equipment, 7%.

Frik Els | April 13, 2021 | 2:16 pm

Federal Financial Resources to Accelerate the Clean Energy Transition:

Tax Incentives, Loan & Loan Guarantee Authority, Direct Spending*

Company Climate-Tech Funding

Companies raised \$10.3 billion globally in 3rd quarter 2024

Source: BloombergNEF

Note: Data excludes undisclosed values and deals under \$1 million

New Mexico Impact Investing Collaborative

Development/Deployment Timelines for Key Technologies

Francehttps://reader.elsevier.com/reader/sd/pii/S0301421521000240?token=875F291C875B56A06A22FF6 1D6E0AFD903726134EEA017D8914E90A9DB516318501601DD1CDF1A5072CFFED060D141A1&originRegi on=us-east-1&originCreation=20210715180413

е

Focusing the Energy Innovation Portfolio on Breakthrough Potential

- Federal and private clean energy innovation are complementary
- Key platform technologies hold great potential to unlock significant clean energy innovation
- A four-step process is used to identify breakthrough technologies that have the potential to aid government, industry and thought leaders in efforts to transform the energy sector

Analyze key drivers of clean energy technology breakthroughs

- Digitalization, big data & smart systems
- The difficult to decarbonize sectors
- Integration of platform technologies
- Systems and supply chains

Develop selection criteria for breakthrough technologies Technical merit Market viability

- Compatibility
- Consumer value

Identify the universe of h emerging energy technologies that have critical features across various timescales

with significant

breakthrough potential

- Critical innovation areas identified are:
- Storage and battery technologies
- Advanced nuclear reactors
- Technology applications for industry and buildings as sectors that are difficult to decarbonize including hydrogen, advanced manufacturing technologies; and building technologies
- Systems: electric grid modernization and smart cities
- Deep decarbonization/largescale carbon management; carbon capture, use and storage at scale; sunlight to fuels; enhanced biological and oceans sequestration

Source: https://www.energy.gov/energy-earthshots-initiative

Source: Advancing the Landscape of Clean Energy Innovation, 2019, EFI, IHS Markit

Focusing the Energy Innovation Portfolio on Breakthrough Potential

Critical innovation areas identified are:

- Storage and battery technologies
- Advanced nuclear reactors
- Technology applications for industry and buildings as sectors that are difficult to decarbonize including hydrogen, advanced manufacturing technologies; and building technologies
- Systems: electric grid modernization and smart cities
- Deep decarbonization/largescale carbon management; carbon capture, use and storage at scale; sunlight to fuels; enhanced biological and oceans sequestration

New Mexico's "Energy Trilemma"

