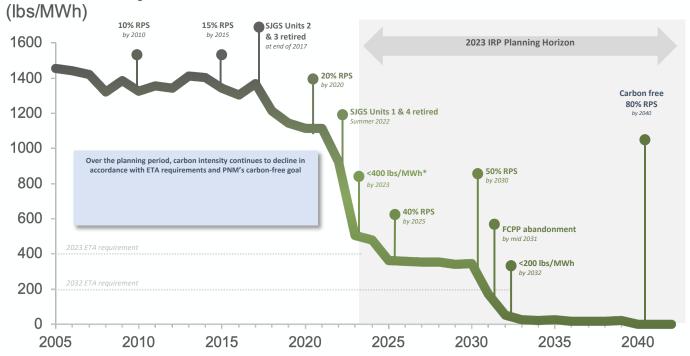
Consortium for Energy Sustainability and Advanced Management

NMT

Panel: Solar, Wind, Energy Storage and Distribution

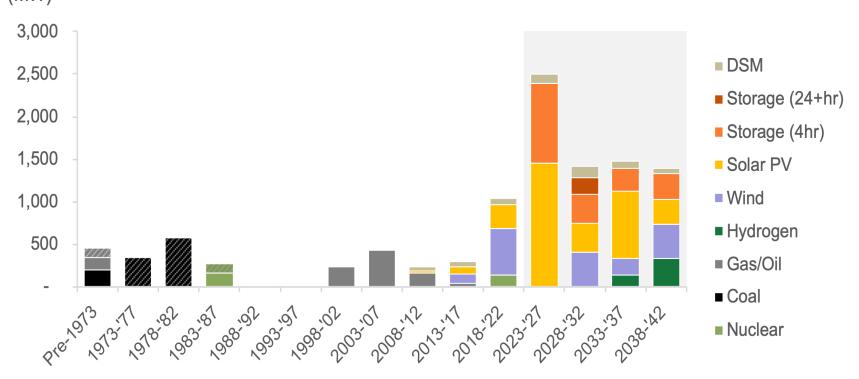
November 7, 2024

Industry Overview

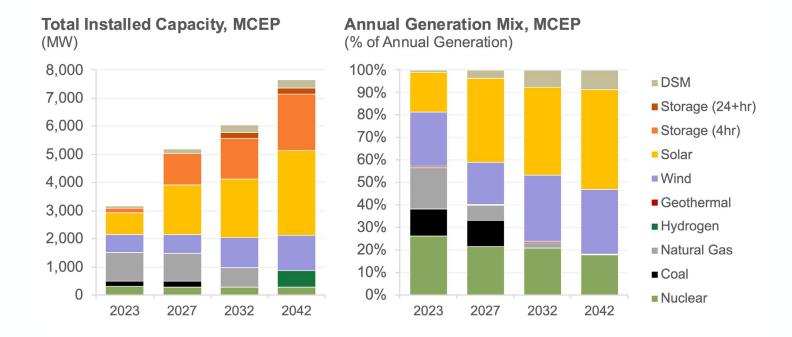

- Renewable resources
- Reducing/eliminating carbon emitting resources
 - NM Requirements:
 - Carbon Free 2045 (PNM Targeting 2040)
 - Renewable 80%: Non-renewable technologies not defined.
- Economics and sustainability
- Onshoring and data centers (including AI)

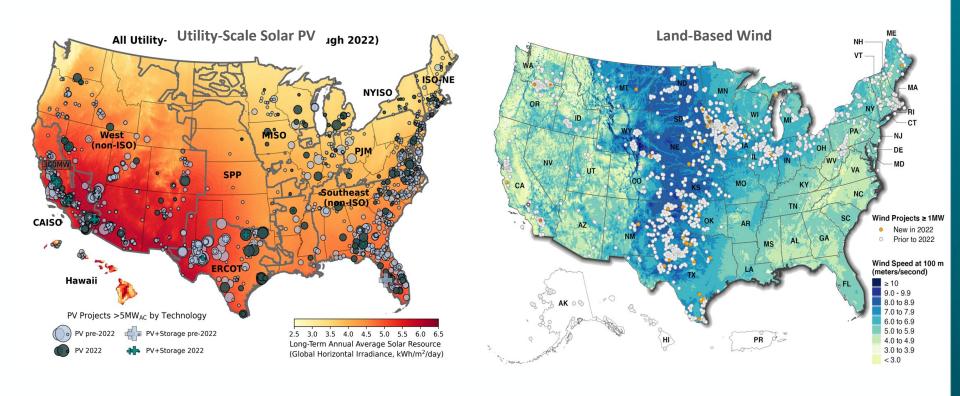
Industry Overview: Carbon Intensity

Carbon Intensity in 2023 IRP MCEP



Technology Integration


New Capacity Additions in Five Year Windows (MW)

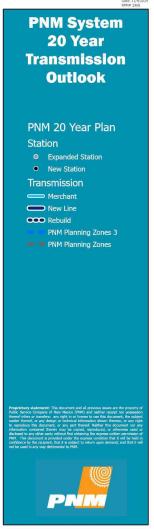

Technology Integration: Future Electric Resource Additions

Technology Integration: Solar, Wind and New Mexico

Storage Solutions

NON-EXHAUSTIVE - HYDROGEN AND HYBRID LONG DURATION STORAGE EXCLUDE

			Inter-day Car		n function as both	Multi-day/week	
ıration	Energy storage form	Technology	Nominal duration, hrs	LCOS ⁵ , \$/MWh	Min. deployment size, MW	Average RTE, %	TRL
Interday	Mechanical	Traditional pumped hydro (PSH)	0–15	70–170	200 – 400	70–80	9
		Novel pumped hydro (PSH)	0–15	70–170	10–100	50-80	5-8
		Gravity-based	0–15	90–120	20–1,000	70–90	6-8
		Compressed air (CAES)	6–24	80–150	200–500	40-70	7-9
		Liquid air (LAES) 1	10–25	175–300	50-100	40-70	6-9
		Liquid CO2 ¹	4–24	50–60	10–500	70–80	4-6
Multi- day / week	Thermal	Sensible heat (e.g., molten salts, rock material, concrete) ²	10-200 ²	300	10–500	55–90	6-9
		Latent heat (e.g., aluminum alloy)	25–100	300	10–100	20-50	3-5
		Thermochemical heat (e.g., zeolites, silica gel)	XX	XX	XX	XX	XX
	Electrochemical	Aqueous electrolyte flow batteries	25–100	100-140	10–100	50-80	4-9
		Metal anode batteries	50–200	100	10–100	40-70	4-9
		Hybrid flow battery, with liquid electrolyte and metal anode (some are Inter-day) ^{2,3}	8-50 ²	XX	>100	55–75	4-9



Grid Challenges

- Aligning
 Transmission Plans
 with Optimal
 Resource
 Technologies
- Achieve Renewable Integration
- Achieve Market Economics and Reliability Support
- Benefits of Diversity

Distribution Challenges

- Legacy construction Today's distribution systems were largely built for one way flow to load.
 - Numerous feeders are experiencing two way flows due to distribution resources (primarily solar)
 - Data centers and manufacturing loads are large in comparison to capacity of typical feeders
 - EV charging:
 - Commercial loads can be large also
 - Home charging may be during peak stress hours
 - Generation hosting capacity, virtual power plants
 - Modernization needed for operation of distribution system with these challenges:
 - Grid Modernization approved: Can result in combined automation of voltage control devices, resources, and consumer rate incentives to influence usage.

